
Cause-effect diagrams
A pragmatic way of doing root-cause analysis

Henrik Kniberg
Version: 1.1 (2009-09-28)

Purpose of this article .. 2

Solve problems, not symptoms .. 3

A3 thinking - the Lean problem solving approach ... 4

How to use cause-effect diagrams .. 5

Example 1: Long release cycle .. 6

Example 2: Defects released to production .. 10

Example 3: Lack of pair programming ... 12

Example 4: Lots of problems .. 15

Practical issues – how to create & maintain the diagrams .. 16

Pitfalls .. 17

Summary: Why to use cause-effect diagrams ... 18

Teams grouped
by component

Teams not
business-
oriented

Teams not
focused Teams don’t have

own PO PO doesn’t have
own team

Ineffective
requirements

communication Unclear roles &
responsibilities

Too much focus
on written specs

Team not getting
feedback from

customer

Lack of team
spirit Lack of discipline

in teams

Hard to
plan Delayed releases Lack of

transparancy
No

burndowns

Bad throughput in
development

Difficult to
release

Cutting quality
instead of scope

Teams disrupted
during sprint

Many operational
problems

Customers
dissatisfied

Hard to
change the

code
Many

defects

Not
measuring

velocity

Feature split across
multiple teams

Fear of
committing

Problems
estimating

Lack of test
automation

Cause-effect diagrams
Henrik Kniberg

page 2 / 18

Purpose of this article

Cause-effect diagrams are a simple and pragmatic way of doing root cause analysis. I’ve been using
these diagrams for years to help organizations understand and solve all kinds of problems – technical
as well as organizational.

The purpose of this article is to show you how cause-effect diagrams work, so you can put them to
use in your own context.

Acknowledgements

I’d like to thank Tom Poppendieck for encouraging me to write about this, and for keeping my
reading list constantly stocked with interesting books and articles about Lean and Systems thinking.

Cause-effect diagrams
Henrik Kniberg

page 3 / 18

Solve problems, not symptoms

The key to effective problem solving is to first make sure you understand the problem that you are
trying to solve - why it needs to be solved, how you will know when you’ve solved it, and what the
root cause is.

Often symptoms show up in one place while the actual cause of the problem is somewhere
completely different. If you just “solve” the symptom without digging deeper it is highly likely that
problem will just reappear later in a different shape.

Problem: Smoke in my bedroom.
Bad solution: Open the window and go back to sleep.
Good solution: Find the source of the smoke and solve it. Whoops, there’s a fire in the basement!
Extinguish it, find out what caused the fire in the first place, install a fire alarm for earlier warning
next time.

Problem: Hot forehead, tired.
Bad solution: Put ice on forehead to cool it down. Eat some sugar to wake up. Keep working.
Good solution: Take my temperature. Oh, I have fever! Go home and rest.

Problem: Memory leak in server.
Bad solution: Buy more memory.
Good solution: Find & fix the source of the memory leak. Implement tests to detect new memory
leaks in the future.

Problem: Water in the boat.
Bad solution: Pump out the water & keep sailing.
Good solution: Find the source of the water. Ah, a hole! Fix it. Then pump out the water.

... and so on.

Most problems in organizations are systemic. The “system” (your organization) has a glitch that
needs to be fixed. Until you find the source of the glitch, most attempts to fix the problem will be
futile or even counterproductive.

Cause-effect diagrams
Henrik Kniberg

page 4 / 18

A3 thinking - the Lean problem solving approach

One of the core tenets of Lean Thinking is Kaizen – continuous process improvement. Toyota, one of
the most successful companies in the world, attributes much of their success to their highly
disciplined problem solving approach. This approach is sometimes called A3 thinking (based on the
single A3-size papers used to capture knowledge from each problem solving effort).

Here’s an example & template:
http://www.crisp.se/lean/a3-template

With the A3 approach, a significant amount of time (the left half of the sheet) is spent analyzing and
visualizing the root cause of a problem before proposing solutions. A cause-effect diagram is only one
way of doing a root-cause analysis. There are other ways too, such as value stream maps and
Ishikawa (fishbone) diagrams. The sample A3 above contains a value stream map (top left) and a
cause-effect diagram (bottom-left).

The nice thing about cause-effect diagrams is that they are fairly intuitive and self-explanatory
(especially compared to fishbone diagrams). Another advantage is that you can illustrate reinforcing
loops (vicious cycles), which is very useful from a systems thinking perspective.

The rest of this article describes how to effectively create and use these diagrams.

http://www.crisp.se/lean/a3-template

Cause-effect diagrams
Henrik Kniberg

page 5 / 18

How to use cause-effect diagrams

Here’s the basic process:

1. Select a problem – anything that’s bothering you - and write it down.
2. Trace “upwards” to figure out the business consequences, the “visible damage” that your

problem is causing.
3. Trace “downwards” to find the root cause (or causes).
4. Identify and highlight vicious cycles (circular paths)
5. Iterate the above steps a few times to refine and clarify your diagram
6. Decide which root causes to address and how (i.e. which countermeasures to implement)

Later on, follow up. If your countermeasures work, then congratulations! If your countermeasures
didn’t work, then don’t despair. Analyze why it didn’t work, update your diagram based on the new
knowledge gained, and try some other countermeasures.

So a countermeasure is in fact an experiment, not a solution. Your hypothesis is that this
countermeasure will solve (or mitigate) the problem, but you can never be sure. You are in effect
prodding your system to see how it reacts. That’s why the follow-up is important.

Failure really just means that your system is trying to tell you something – so you’d better listen. The
only real failure is the failure to learn from failure!

Cause-effect diagrams
Henrik Kniberg

page 6 / 18

Example 1: Long release cycle

Let’s say our problem is that we always miss deadlines. More specifically, our releases always occur
at a later date than planned.

Delayed
releases

A problem is only a problem if it conflicts with your goal. So start by defining your goal, and think
about the consequences of this problem in terms of your goal. This can be done by asking a series of
“so what?” questions until you identify the visible damage.

Let’s say our goal is to delight our customers and maximize our revenue. Our dialog might sound
something like this:

Q: “Who cares if the releases are delayed? What is the consequence?”
A: “Delays make our release cycles long”
Q: “So what?”
A: “That delays our revenues, which messes up our cash flow. It also causes us to lose customers,
since they are impatient and don’t like waiting longer than necessary.”

As we talk, we add boxes and cause-effect arrows to the diagram. Normally I try to go “upwards”
from the original problem statement when mapping out consequences, but that isn’t a strict rule.

Long release cycle

Delayed
releases

Delayed revenue Loss of customers
Problem Problem

So delayed releases isn’t really the problem. The real problem is delayed revenue and loss of
customers. At this point we should consider three things:

1. Are there any other issues that are causing loss of customers or delayed revenues? If so, are
delayed releases the biggest culprit or should we turn our attention elsewhere?

2. Can we quantify the problem? How much revenue have we lost? How many customers have
we lost? This data will help us evaluate how much effort it is worth spending to solve this
problem.

3. How will we know when we’ve solved the problem? If a consultant comes in, does a noisy
rain dance and then proudly proclaims says “I’ve solved the problem now”, how will we call
the bluff?

Cause-effect diagrams
Henrik Kniberg

page 7 / 18

Once we’ve spent some time analyzing the consequences of the problem it is time to dig downwards
– towards the root.

This is done by asking a series of “why” questions. Yes, this is the “five whys” technique that you’ve
probably heard of if you’ve studied lean thinking.

Q: “Why are the releases delayed?”
A: “Because the scope keeps increasing”
Q: “Why?”
A: “Because the customers comes up with new features and insists that we add them to the current
release, and refuses to allow us to remove lower priority features.”
Q: “Why? Why not defer the features until next release?”
A: “Because the release cycle is so long, so new demands appear before the release is done.”

OK, that was only 3 whys. But you get the picture.

This dialog gives us the following picture:

Long release cycle

Business needs
change within

current release
cycle

Delayed
releases

New features
added to current

release

Lower priority
features not

removed

Total scope
increase

Delayed revenue Loss of customers
Problem Problem

The vicious cycle (or re-enforcing loop) is highlighted with red arrows. Recurring problems almost
always involve loops like this, but they may take some time to find. Spotting these will greatly
increase your likelihood of solving the problem effectively and permanently!

Cause-effect diagrams
Henrik Kniberg

page 8 / 18

Our goal is to identify the root cause(s) of this problem, so we can achieve maximum effect with
minimum effort. It is easy to miss important causes on the first pass – so go back and ask a few more
whys.

Q: “Why is the release cycle long? Are delayed releases the only cause?”
A: “Well actually, even without the delays our planned release cycles are quite long.”
Q: “How long is your planned release cycle?”
A: “Once per quarter.”
Q: “Why so long then?”
A: “Because releases are expensive and complicated.”
Q: “Why?”
A: “Because there’s so much stuff in each release, and because it’s all manual work.”

Long release cycleLots of stuff in each
release

Business needs
change within
current release

cycle

Delayed
releases

New features
added to current

release

Difficult release
process

Lack of release
automation

High fixed cost per
release

Release seldom

Lower priority features
not removed

Total scope
increase

Delayed revenue Loss of customers
Problem Problem

Root cause Root cause

Look to the left, another vicious cycle (red arrows)! Long time between releases means lots of stuff in
each release, which means releases are difficult and expensive, which makes us reluctant to have
frequent releases.

As you see, I’ve decided to label two root causes. Now it’s time to propose countermeasures:

Root cause Countermeasure
Lack of release automation Implement release automation
Lower priority features not removed Negotiate a rule with the customer, allowing

them to add new features to a release only if
they remove lower priority features of
corresponding size.

Cause-effect diagrams
Henrik Kniberg

page 9 / 18

There’s no strict rule for determining which issue is the root cause, but here are some indicators.

• This issue has only arrows going out, and no arrows coming in.

• It doesn’t feel meaningful to dig further down (ask further “why” questions) from here.

• This issue is something we can address, and it will probably have a significantly positive effect
on the problem.

The “five whys” technique is called so because it typically takes about five “why” questions to get to
the root. We tend to stop asking too early, so keep digging!

Note that the originally identified problem – delayed releases – wasn’t really a problem or a root
cause. It was just a symptom. We used that as a handle to dig upwards to identify the real problem,
and then downwards to identify the root causes. This allows us to propose effective
countermeasures in an informed way.

Without this type of analysis, we tend to jump to conclusions and execute ineffective and
counterproductive changes. For example adding more people, even though head count had nothing
to do with the problem. Or changing the incentive model (reward people for releasing on time or
punish people for releasing late) even though the current incentive model had nothing to do with the
problem. I bet you’ve already seen that happen a few times.

Cause-effect diagrams
Henrik Kniberg

page 10 / 18

Example 2: Defects released to production

Let’s say we are having problems with defective code being released to production.

Defects release to
production

Q: So what?
A: The defects make our customers angry

Defects release to
production

Angry customers
Problem

Q: Why are defects released to production?
A: Because they aren’t properly tested before release.
Q: Why not?
(etc)

Here’s where we ended up:

Teams
disrupted

Hotfixes
required

Defects release to
production

Releases not
properly tested

Scope of sprint
not reduced

Lack of test
automation

Not enough
time to write
test scripts

Stress

Angry customers
Problem

Root cause

Lack of tools &
training in test

automation
Root cause

Look at that, two reinforcing loops! Check out the red arrows.

Cause-effect diagrams
Henrik Kniberg

page 11 / 18

Loop 1 (inner loop): Defects in product causes hot-fixes, which disrupts the team. Since they aren’t
allowed to reduce scope, they are stressed and don’t have time to test new releases properly. Which,
of course, leads to more defects in production.

Loop 2 (outer loop): Because they are stressed, they don’t have time to write automated test scripts
either. This leads to an overall lack of test automation, making it harder and harder to regression-test
new releases properly, which leads to defects in production and hot-fixes and ultimately more stress.

But wait, there’s more!

Teams hate being disrupted. This disturbs flow and, in the long run, ruins motivation. This might
explain which the staff turnover rate has been high! So in solving the original problem (defects in
production) we get the added bonus of reducing team turnover!

Teams
disrupted

Hotfixes
required

Defects release to
production

Releases not
properly tested

Scope of sprint
not reduced

Lack of test
automation

Not enough
time to write
test scripts

Stress

Angry customers
Problem

Root cause

Lack of tools &
training in test

automation
Root cause

Teams
demotivated

Loss of team
members

Problem

That’s the nice thing about addressing the root cause. Root causes are usually the cause of more than
one problem (that’s why they are called “root”...).

Cause-effect diagrams
Henrik Kniberg

page 12 / 18

Example 3: Lack of pair programming

I was asked to help a client figure out why they weren’t doing XP practices like pair programming and
test-driven development. “We know that we should be doing it, but we aren’t”.

No TDD No pair
programming

So is lack of TDD and pair programming really a problem? As usual, the things we call problems often
turn out to be just symptoms.

Q: What is the consequence of not doing pair programming and TDD?
A: We think we would have much better code quality if we did these things.
Q: What is the consequence of bad code quality? Have you encountered any actual problems due
to bad code quality?
A: Yeah, we’ve had some crashing demos. We are a research company and demos are how we get
business, so this is really a problem.

No TDD No pair
programming

Bad code
quality

(etc)(etc)(etc)

Crashing
demos

Problem

OK, let’s take one of the issues and see if we can dig down to the root.

Q: Why aren’t you pair programming then?
A: Because many people are afraid that it won’t work, and that we will be wasting our time. We have
no proof that it works.
Q: What kind of “proof” would you need?
A: Well, we’ve seen studies that indicate that it works. But nobody here has really tried it, so we
aren’t sure that it works.

Well, there’s the first loop:

No pair
programming

No ”proof” that pair
programming works

No experience of pair
programming

Cause-effect diagrams
Henrik Kniberg

page 13 / 18

They don’t want to do it because they don’t know that it will work. And they don’t know that it will
work because they haven’t tried it...

Q: Why haven’t you at least given pair programming a try?
A: We don’t have time to experiment.
Q: Why not?
A: Because we don’t have any slack. Each hour is accounted for. Our customers keep piling work on
us.
Q: Why don’t they let you manage your own time, and let you pull in more work whenever you are
ready?
A: They don’t trust us to use our time effectively.

The lack of trust also leads to a general fear of failure, which of courses reduces the likelihood that
they will try something new like pair programming without “proof” that it works.

No pair
programming

No ”proof” that pair
programming works

No experience of pair
programming

No time to experiment

No slack

Push-scheduling
instead of pull

Lack of trust

Fear of failure

Each hour must
be debitable

Root cause

Root cause

So there appears to be two big root causes: Lack of trust, and the management principle that every
hour must be debitable. Let’s fold this back into the big picture.

Cause-effect diagrams
Henrik Kniberg

page 14 / 18

No TDD No pair
programming

Bad code
quality

(etc)(etc)(etc)

Crashing
demos

Problem

Lack of trust
Root cause

Lack of trust turned out to be the root cause of not doing XP practices such as TDD and pair
programming. That causes bad quality which causes crashing demos. And guess what? Crashing
demos reduce trust even further. There’s a vicious circle for you!

The interesting thing is that we did this in a 2-day workshop with about 25 people. At the beginning
we were talking mostly about technical stuff – how to get started with TDD and pair programming.
That didn’t really get us anywhere, so we instead split into groups and had each group choose one
problem and start drawing cause-effect diagrams and create problem solving A3s. The interesting
thing is that several of the groups that were analyzing seemingly different problems came up with
the same root cause – lack of trust! The diagram above was just one example of this.

So by the end of the day we were all talking about what we could do to increase the level of trust
between the customer and the developers, which was a surprising turn of events.

For starters we agreed that we should invite “them” (the customers) to participate next time we do
this type of workshop, which should lessen the use of terms like “us” and “them”...

Cause-effect diagrams
Henrik Kniberg

page 15 / 18

Example 4: Lots of problems

Here’s a bigger example. This organization was doing Scrum but was having some problems. After
some interviews and workshops the cause-effect diagram that emerged showed that they weren’t
really doing Scrum correctly and that this was causing problems.

It became clear to everyone that many of the root causes would be addressed with a “proper” Scrum
implementation (for example reorganizing into cross functional teams, and making sure each team
has a dedicated product owner). This triggered organizational changes that ultimately fixed many of
the root causes (green stars). The next step was to improve test automation.

Scrum isn’t always the solution of course. In fact, sometimes Scrum itself is the problem and other
techniques such as Kanban are the solution See my upcoming book “Kanban and Scrum – making the
most of both” for more on that.

Teams grouped
by component

Teams not
business-
oriented

Teams not
focused Teams don’t have

own PO PO doesn’t have
own team

Ineffective
requirements

communication Unclear roles &
responsibilities

Too much focus
on written specs

Team not getting
feedback from

customer

Lack of team
spirit Lack of discipline

in teams

Hard to
plan Delayed releases Lack of

transparancy
No

burndowns

Bad throughput in
development

Diff icult to
release

Cutting quality
instead of scope

Teams disrupted
during sprint

Many operational
problems

Customers
dissatisfied

Hard to
change the

code
Many

defects

Not
measuring

velocity

Feature split across
multiple teams

Fear of
committing

Problems
estimating

Lack of test
automation

= root cause

= visible damage

= talked about

= not talked about

= fix first

= vicious cycle

Cause-effect diagrams
Henrik Kniberg

page 16 / 18

Practical issues – how to create & maintain the diagrams

Working alone

When creating the diagrams alone I find it easiest to work directly with a diagramming tool such as
Visio or Powerpoint. It’s nice to be able to move things around quickly, resize the boxes, and make
quick backups when playing around with the picture.

Working in a small group (2 – 8 people)

Gather in front of a whiteboard or flipchart. Use
stickynotes for issues, and draw arrows to connect
them. Whiteboard is preferable, so you could erase
and redraw the arrows as you move the stickynotes
around. Make sure everybody is helping out, not just
one person doing all the drawing. Make sure someone
takes a high-resolution photo and sends to everyone
after the meeting.

Working in a larger group (9 – 30 people)

Split the group into smaller teams, each focused
around one specific problem. It is OK to have multiple
teams working independently on the same problem –
they may come to the same conclusion or different
conclusions, and both cases are interesting. Each team
works with a flipchart/whiteboard and stickynotes.
Gather everyone together at regular intervals to share
insights.

Long-term maintenance of a diagram

Let the diagram live in a tool such as Visio or Powerpoint. Whenever you get to a workshop setting,
decide if the meeting is mostly for presenting the diagram, or for updating it. If presenting, use a
projector to show the diagram directly in Visio (or whatever tool you use). If updating the picture,
replicate it on a whiteboard/flipchart with stickynotes and arrows so that people can collaborate
effectively. Then synchronize with the electronic tool after the meeting.

This type of synchronizing does take some time, but it is often worth it. Nothing can beat physical
tools like whiteboards & stickynotes when doing team workshops.

Cause-effect diagrams
Henrik Kniberg

page 17 / 18

Pitfalls

Too many arrows and boxes

Sometimes the diagram gets too messy to be readable. In that case you need to simplify it. Here are
some techniques:

• Remove redundant boxes (i.e. boxes that don’t add much value to the diagram).

• Focus on “depth first” rather than “breadth first”. Don’t write all causes of a problem, write
only the most important one or two, and then keep digging deeper.

• Accept imperfections, a diagram like this will never be perfect.
“All models are wrong, but some are useful” (George Box)

• Maybe your problem area is too broad, try to limit yourself to a more narrowly defined
problem.

• Split the diagram into pieces, like I did in example 3 above.

Oversimplification

This type of cause-effect diagram is simple, intentionally so. It doesn’t replace face-to-face
communication. If you need something more advanced or formally defined read a book on systems
thinking, such as “The Fifth Discipline” by Peter Senge. There are ways to distinguish between
reinforcing loops and balancing loops, and ways of adding a temporal dimension (showing how X
causes Y but with a delay). Just beware – even a “perfect” diagram is pretty useless if you need a
doctor’s degree to understand it.

Getting personal

Avoid “blame game” issues such as:

Lots of defects in
Jeff’s code

Jeff is lazy & clumsy

Problem solving works best if you assume that all problems are systemic. Sure there are clumsy
people. But even if that is causing us significant problems then that is still a systemic problem – we
have a system that assumes clumsy people aren’t clumsy, or a system that lets extremely clumsy
people in, or a system that doesn’t help clumsy people get less clumsy, etc.

This point is worth emphasizing: Treat all problems as systemic!

Cause-effect diagrams
Henrik Kniberg

page 18 / 18

Summary: Why to use cause-effect diagrams

• Create a common understanding
o Team-based problem is extremely effective, but requires a common understanding

of the problem. Cause-effect diagrams are a very practical collaboration technique.

• Identify how problems affect the business
o So that you can focus on the most important problems first and make informed

decisions.

• Find root causes
o So that you can maximize the effect of your changes.

• Find vicious cycles (negative reinforcing loops)
o So that you can break them, or turn them into positive reinforcing loops (good stuff

leading to more good stuff, instead of bad stuff leading to more bad stuff).

Good luck!

/Henrik

Email: henrik.kniberg AT crisp.se
Web: http://www.crisp.se/henrik.kniberg
Blog: http://blog.crisp.se/henrikkniberg

http://www.crisp.se/henrik.kniberg
http://blog.crisp.se/henrikkniberg

